TUBERCULOSIS PHARMACOTHERAPY

Dean Van Loo, Pharm.D. June 21, 2011

Objectives

- Identify the mechanism of action and adverse effects of the commonly used antituberculosis agents
- Given a patient being treated for tuberculosis:
 - Identify significant drug interactions and the appropriate action which should be taken
 - Screen for the common adverse effects and determine whether they require discontinuation of therapy.

Case

HS is a 45 year old man just admitted to the hospital from the homeless shelter with a 2 week history of cough with bloody sputum and significant weight loss over the past few months. His sputum was positive for acid fast bacilli and his positive chest X-ray with cavitary lesions leads to a diagnosis of tuberculosis.

First Line anti-tuberculosis agents

- Always used in combination for treatment
- Overlapping toxicities
- Many drug interactions

Isoniazid

- Probably the most effective agent against Tb
- MOA inhibits production of mycolic acid, an essential component of Tb cell wall
- Very lipophilic, excellent penetration into most tissues.
- Metabolized primarily by acetylation which has a genetic polymorphism. About 50% are fast acetylators.
- INH has very few drug interactions.

Isoniazid

- Adverse Effects
 - Neurotoxicity
 - Must give Vitamin B6 (pyridoxine) 25-50mg/day
 - Hepatotoxicity
 - Rifampin increases isoniazid toxicity through induction of metabolism to a hepatotoxic metabolite (hydrazine)

Rifampin

- Second most effective agent
- MOA RNA polymerase inhibition
- Drug interactions
 - Induces microsomal liver enzymes
 - Primarily CYP3A4 but induces broadly
 - All drugs should be evaluated for interactions
 - Examples
 - Atorvastatin
 - Warfarin

Rifampin

- Adverse effects
 - Hepatotoxicity
 - Body Fluid discoloration
 - Nausea/Vomiting
- Particularly prone to resistance

Rifabutin

- NOT FDA Approved for treatment of Tb!!!!
- Very similar to Rifampin but less significant drug interactions
- Always used in place of rifampin in HIV patients receiving protease inhibitors
- Appears slightly less efficacious than rifampin.

Rifapentene

- Very similar to rifampin in most respects
- Less drug interactions than rifampin but less well studied with regard to interactions compared to rifabutin
- Longest half life of all the rifamycins
- Recent data

Pyrazinamide

- No activity as the parent compound –
 activated inside the macrophages at pH<5.5
- MOA unknown
- Adverse effects
 - Hepatotoxicity (probably most of the first line anti-Tb agents)
 - Increases uric acid (watch in gout)

Ethambutol

- Least effective of first line drugs but increases activity of other agents
- MOA Interferes with mycobacterial RNA synthesis
- Requires renal adjustment in severe dysfunction
- Adverse Effects
 - Hepatotoxicity
 - Optic neuritis (visual disturbances)

Questions to consider

- How would you respond to the development of the following toxicities?
 - Nausea and vomiting
 - Hepatotoxicity
 - Neurotoxicity (peripheral? Optic?)
 - Joint pain
 - Blood in the urine

Second - Line Drugs

- Generally reserved for toxicity or resistance
- Uniformly less active than first line drugs (or more toxic)
- Often the data is less robust

Aminoglycosides

- Aminoglycosides
 - Activity
 - Streptomycin>Amikacin=Kanamycin> Capreomycin
 - FDA indicated?
 - Yes: Streptomycin and Capreomycin
 - No: Amikacin and Kanamycin
 - Mechanism of action
 - Binds to the 30S portion of the ribosome inhibits protein synthesis

Aminoglycosides

- Adverse Effects
 - Little to no hepatotoxicity
 - Ototoxicity
 - Nephrotoxicity
 - Electrolyte abnormalities
 - Drug interaction limited to additive toxicities

Fluoroquinolones

- NONE are FDA Approved!!!!
- Fluoroquinolones
 - Activity
 - Moxi>Gati>Levo>Cipro
 - Do not use ciprofloxacin
 - Levofloxacin probably has the best clinical data
 - Well tolerated but not much clinical data although more is published each year
 - Rapidly becoming the most important second line agents.

Cycloserine

- Probably the best activity of the second line drugs
- Numerous, significant adverse effects
 - Hepatotoxicity
 - Electrolyte abnormalities
 - Seizures
 - Arrhythmias
 - Psychosis
 - Many others

2nd Line Drugs Continued

- Ethionamide not FDA approved!!!!
 - Poorly tolerated (GI effects), neurotoxicity necessitating B6 supplementation
- p-aminosalicylic acid (PAS)
 - Fairly poor activity but generally well tolerated
 - Requires adjustment in renal dysfunction
- Linezolid not FDA approved!!!
 - Anti-ribosomal protein synthesis inhibitor
 - Excellent in-vitro activity
 - Clinical data unconvincing

Investigational Drugs

(Of course none of these are approved!!)

- Second generation oxazolidinones
- SQ109 second generation ethane diamine
- Bedaquiline diarylquinolones
- Nitroimidazoles
 - Delamanid

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 7, 2012

VOL. 366 NO. 23

Delamanid for Multidrug-Resistant Pulmonary Tuberculosis

Considerations

A patient with XDR Tb is currently on:

Pyrazinamide, ethambutol, moxifloxacin, cycloserine, p-aminosalicylic acid and streptomycin.

What action would you take for the following adverse effects?

Visual disturbances

Low potassium

Increasing SCr

Increasing AST/ALT

Questions